How do plants and animals interact with their surroundings? What is the role of algae in shaping ecosystems? How do mammals eat, reproduce, and behave? What makes freshwater ecosystems so unique? How do ecologists study animal behavior in the field?

You can learn the answers to all of these questions (and more!) in classes offered in Ecology and Evolution that focus on the ecology and behavior of plants and animals. If you have other questions or more in-depth questions about ecology, the EEB department also offers opportunities for students to conduct their own undergraduate research.

bee on a mushroom in a forest mojave desert dung beetle

Courses focusing on ecology

For more information about a course, click on the title to expand the description. Many courses in EEB cover ecology as part of a broader curriculum, but are not listed here because ecology is not the main focus.

See also:

All EEB undergrad course offerings
Biological Sciences advising page.

EEB 2100E: Global Change Ecology

The impacts of humans on the biosphere are pervasive and profound, with potentially catastrophic consequences for ecosystems and human society. This course will explore the major components of global change including climate change, pollution, over-exploitation of resources, land-use change and biotic homogenization. We will consider how each of these drivers modifies natural ecosystems and the ability of these ecosystems to continue providing the services on which human society depends. In the group project, students will practice communicating scientific evidence about the consequence of global change to a non-specialist audience. The course fulfills the General Education Core Area 3 and Environmental Literacy requirements.

Instructor: Bagchi (Storrs), Finiguerra (Avery Point)

Typically offered: Fall alternate years, odd


Format: Lecture

Grading: Three exams, 10 online quizzes, group project (oral and written components).

EEB 2244: General Ecology

Ecology, the scientific study of interactions between organisms and their environment, is at the heart of understanding how nature works. This course teaches the basic principles of ecology, progressing from organisms (physiological and evolutionary ecology) to populations (population distribution and dynamics, population interactions), communities (community structure and dynamics, biological diversity), ecosystems (energy flows and nutrient cycles), and ultimately the biosphere (global ecology). Students are introduced to a broad variety of scientific approaches used in the study of ecology, including observational studies, manipulative experiments, and mathematical models. The course aims not only to provide a broad introduction to this scientific discipline, but also to increase understanding of the scientific process and appreciation of the main discoveries of ecological science, and how they inform societal responses to climate change, the spread of invasive species, and non-sustainable extraction of resources.

Instructor: Adams and Turchin, Davis

Typically offered: Fall Spring

Credits: 4

Format: Lecture, weekly discussion sessions

Grading: Grading is based on 3 in-class exams and one final exam. Additionally students earn points from participation in lectures and activities in discussions including a final in-class oral presentation on conservation biology.

EEB 3201: Animal Behavior

From the foraging habits of the dung beetle to the complex social system of African lions, Animal Behavior is a fascinating field of study. This course explores the ecological, evolutionary, and mechanistic basis of Animal Behavior, from broad patterns to bizarre oddities. Examples of topics include fighting and territoriality, mate choice and competition, sociality, altruism, parental care, mating systems, communication, and cooperation. Although the course is primarily lecture-based, we also use non-traditional learning activities, such as designing group research projects and presentations, reading relevant journal articles then video-chatting with the authors, and applying the scientific method.

Instructor: Knutie

Typically offered: Fall Spring

Credits: 3


Grading: The course is assessed with three midterm and one final exam, a group project and presentation, three assignments, and class participation.

students observing animal behavior in the field

students observing animal behavior in the field

EEB 3244W: Writing in Ecology

Instructor: Schlichting

Typically offered: Fall

Credits: 2



EEB 3247: Freshwater Ecology

Humans have an innate connection to freshwater systems, be they ponds, lakes, or streams. Join this course to understand the inner workings of these freshwater ecosystems through linked lectures, discussions, labs, and by studying real systems. You will understand the diversity, processes, and organisms that make freshwater systems unique and so important to life on Earth. We will also learn about the many threats to freshwater systems and how to manage these threats. Through an independent project, you will apply your learning by following your own scientific curiosity. The course is perfect for future scientists, resource managers, educators, or just anyone who enjoys class outside.

Instructor: Urban

Typically offered: Fall alternate years, odd

Credits: 4

Format: 2 lectures and an afternoon lab each week

Grading: Midterm, final, independent project, plus quizzes, participation, and lab reports

students doing freshwater ecology field work

EEB 3267: Field Animal Behavior

Introduction to animal behavior, focusing on observational methods, collecting techniques, and analysis of behavioral data. Topics include foraging theory, territoriality, navigation, social behavior, communication, mating systems and sexual selection. Field trips required.

Instructor: TBD

Typically offered: Summer

Credits: 3

Format: Lecture, Laboratory, daily field trips


EEB 3360: Physiological Ecology of Plants

The biggest challenges of being a plant are that they can't go inside when it gets too hot or too cold, they can't move around till they find something to eat, they can't pick up and leave when there is nothing left to drink where they currently are, and when a bug comes to eat them, they can't call an Uber. Rather, plants have to figure out how to take light from the sun, carbon dioxide from the air, and water and nutrients from the soil under the often really tough environmental conditions of where the seed that produced them happen to sprout. Plants have to figure out how to do this in a desert  when it is really hot, or in the alpine, where it is really cold.  They have to figure out how to do this when there is almost no light when they are trying to grow at the bottom of a tropical rainforest, or when there is too much light (yes, avoiding sunburn is a real problem for plants too!). Plants have evolved an amazing array of physiological processes and adaptations that allow them to not only cope with the many challenges of the earth's diverse environments, but to prosper in the most brutal of climates, to make the world the green place we see when we step outside, and to be the fundamental source of food for our existence. And as if they don’t have enough to do just to survive, plants serve on the front line of fighting back against the human-caused rise of carbon dioxide in the atmosphere that is driving global climate change.

Instructor: Seemann

Typically offered: Fall alternate years, even

Credits: 3

Format: 3 hr Lecture

Grading: Grading is based on a midterm exam, a final, and occasional quizzes.

EEB 4215: Physiological Ecology of Animals

Physiology of animals in an evolutionary context: how individuals cope and how species adapt to natural environments. Topics include energy budgets, temperature regulation, energetics of locomotion, respiration, feeding and diet. Lectures, student-led presentations, and critical discussions of current journal articles.

Instructor: Schultz

Typically offered: Spring alternate years, even

Credits: 3

Format: 3 one hour lectures

Grading: Grades are based on exams, short written assignments and student presentations

EEB 4230W: Methods of Ecology

Methods of Ecology is an intensive, hands-on course designed as a primer in how to conduct ecological research. The course is particularly useful for students interested in pursuing research-relevant or data-oriented careers and for Honors students who will be writing theses. By the end of the course, students will 1) know how to ask research questions and develop testable hypotheses, 2) be familiar with a variety of field sampling and computational methods commonly used in ecological studies, including how to code using the program R, 3) be able to enter data, visualize it, and run a variety of fundamental statistical tests, and 4) be confident in how to turn collected data into a publishable scientific manuscript.

Instructor: Tingley

Typically offered: Fall

Credits: 4

Format: Two 4-hour combined lecture/labs per week, including 9 field trips

Grading: Weekly assignments, final project report, no tests

Undergraduate Research

EEB faculty offer opportunities for undergraduate students to work on research during the summer or academic year. Students can participate in lab and field work on projects ranging from cicada systematics, to conifer genomics, to the maintenance of color morphs. Each year, the department hosts an undergraduate research symposium for EEB students, from which several students are selected to present at the Biology Undergraduate Research Symposium. To get involved in research in EEB, read through faculty profiles and websites and contact a faculty member whose research interests you.

Many faculty also mentor independent projects led by students, especially for students applying for funding to conduct research through the Office of Undergraduate Research (OUR). Examples of recent undergraduate research projects in the EEB department funded by OUR include:

  • The Effect of Forest Fragmentation on Interactions between Insect Herbivores and their Parasitoids
  • Increasing Levels of Carbon Dioxide in Freshwater may Mediate the Predation of the Keystone Species Daphnia magna
  • Effects of Soil Conditions and Forest Composition on Morph Frequencies in a Woodland Salamander, Plethodon cinereus
  • Impact of Climate Change on Mutualistic Soil Fungi and Their Interactions with Native Maple and Oak Seedlings